Development of Machine Learning Models for Accurately Predicting and Ranking the Activity of Lead Molecules to Inhibit PRC2 Dependent Cancer

Author:

Danishuddin ,Kumar VikasORCID,Parate ShraddhaORCID,Bahuguna Ashutosh,Lee Gihwan,Kim Myeong Ok,Lee Keun Woo

Abstract

Disruption of epigenetic processes to eradicate tumor cells is among the most promising interventions for cancer control. EZH2 (Enhancer of zeste homolog 2), a catalytic component of polycomb repressive complex 2 (PRC2), methylates lysine 27 of histone H3 to promote transcriptional silencing and is an important drug target for controlling cancer via epigenetic processes. In the present study, we have developed various predictive models for modeling the inhibitory activity of EZH2. Binary and multiclass models were built using SVM, random forest and XGBoost methods. Rigorous validation approaches including predictiveness curve, Y-randomization and applicability domain (AD) were employed for evaluation of the developed models. Eighteen descriptors selected from Boruta methods have been used for modeling. For binary classification, random forest and XGBoost achieved an accuracy of 0.80 and 0.82, respectively, on external test set. Contrastingly, for multiclass models, random forest and XGBoost achieved an accuracy of 0.73 and 0.75, respectively. 500 Y-randomization runs demonstrate that the models were robust and the correlations were not by chance. Evaluation metrics from predictiveness curve show that the selected eighteen descriptors predict active compounds with total gain (TG) of 0.79 and 0.59 for XGBoost and random forest, respectively. Validated models were further used for virtual screening and molecular docking in search of potential hits. A total of 221 compounds were commonly predicted as active with above the set probability threshold and also under the AD of training set. Molecular docking revealed that three compounds have reasonable binding energy and favorable interactions with critical residues in the active site of EZH2. In conclusion, we highlighted the potential of rigorously validated models for accurately predicting and ranking the activities of lead molecules against cancer epigenetic targets. The models presented in this study represent the platform for development of EZH2 inhibitors.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3