Simultaneous Anaerobic Ammonium Oxidation and Electricity Generation in Microbial Fuel Cell: Performance and Electrochemical Characteristics

Author:

Zhang JiqiangORCID,Zhang Zaiwang,Rong Kun,Guo Haiying,Cai Jing,Xing Yajuan,Ren Lili,Ren Jiayun,Wu TaoORCID,Li Jialiang,Zheng Ping

Abstract

In this study, a microbial fuel cell (MFC) that can achieve simultaneous anode anaerobic ammonium oxidation (anammox) and electricity generation (anode anammox MFC) by high-effective anammox bacteria fed with purely inorganic nitrogen media was constructed. As the influent concentrations of ammonium (NH4+-N) and nitrite (NO2−-N) gradually increased from 25 to 250 mg/L and 33–330 mg/L, the removal efficiencies of NH4+-N, NO2−-N and TN were over 90%, 90% and 80%, respectively, and the maximum volumetric nitrogen removal rate reached 3.01 ± 0.27 kgN/(m3·d). The maximum voltage and maximum power density were 225.48 ± 10.71 mV and 1308.23 ± 40.38 mW/m3, respectively. Substrate inhibition took place at high nitrogen concentrations (NH4+-N = 300 mg/L, NO2−-N = 396 mg/L). Electricity production performance significantly depended upon the nitrogen removal rate under different nitrogen concentrations. The reported low coulombic efficiency (CE, 4.09–5.99%) may be due to severe anodic polarization. The anode charge transfer resistance accounted for about 90% of the anode resistance. The anode process was the bottleneck for energy recovery and should be further optimized in anode anammox MFCs. The high nitrogen removal efficiency with certain electricity recovery potential in the MFCs suggested that anode anammox MFCs may be used in energy sustainable nitrogen-containing wastewater treatment.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3