Tool Wear in Nickel-Based Superalloy Machining: An Overview

Author:

Wang Rui,Yang DayongORCID,Wang Wei,Wei Furui,Lu YuweiORCID,Li Yuqi

Abstract

Nickel-based superalloys have been widely used in the aerospace, petrochemical, and marine fields and others because of their good oxidation resistance, corrosion resistance, stability, and reliability at various temperatures. However, as a nickel-based superalloy is a kind of processed material, in the cutting process a large amount of cutting heat is generated due to the interaction between the tool and the workpiece. At the same time, the low thermal conductivity of the workpiece causes a large amount of cutting heat to accumulate at the contact point, resulting in serious tool wear, reduced tool life, frequent tool changes, and other problems, which increase the production cost of the enterprise. This paper introduces the tool wear mechanisms (abrasive wear, adhesive wear, plastic deformation, chemical wear, etc.) in the machining process of nickel-based superalloys and summarizes the research status of failure mechanisms, tool wear optimization, etc. Based on a review of the existing research, it was found that the purpose of adding tool coatings, optimizing tool materials and cutting parameters, or improving the cutting environment is to control the heat during the processing of nickel-based superalloys to improve the tool environment and prolong the service life. The development prospects of tool wear prevention measures in the field of nickel-based alloy machining are also described.

Funder

National Natural Science Foundation of China

Science and Technology Project of Guangxi

Science and Technology Project of Liuzhou

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3