Multicomponent Comminution within a Stirred Media Mill and Its Application for Processing a Lithium-Ion Battery Slurry

Author:

Nöske Markus,Müller Jannes,Nowak Christine,Li Kangqi,Xu Xiaolu,Breitung-Faes Sandra,Kwade ArnoORCID

Abstract

This study presents an approach for targeted comminution of component mixtures within a wet-operated stirred media mill. In the first step, a general understanding of the interactions between individual components on the grinding result with mixtures could be gained with basic experiments and following our former research work. In particular, a protective effect of the coarser particles on the fines could be elucidated. These findings were used to develop a process for the production of a battery slurry containing fine ground silicon particles as well as dispersed carbon black and graphite particles. By a tailored sample preparation applying a combination of particle dissolution and separation, the particle size distributions of carbon black and graphite particles were analyzed separately within the produced battery slurries. Based on the selective particle size analysis, the slurry preparation could be transferred from a complex multistage batch process using a dissolver to a stirred media mill, which was finally operated in a continuous one-passage mode. The prepared slurries were subsequently further processed to silicon-rich anodes using a pilot scale coating and drying plant. Afterward, the produced anodes were electrochemically characterized in full cells. The cell results prove a comparable electrochemical behavior of anode coatings derived from a dissolver- or mill-based slurry production process. Therefore, we could demonstrate that it is possible to integrate the mixing process for the production of multicomponent slurries into the comminution process for the preparation of individual materials upstream. Even with nearly identical starting sizes of their feed materials, the targeted particle size distributions of the single components can be reached, taking into account the different material-dependent particle strengths and sequential addition of single components to the multicomponent comminution process.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3