Abstract
From the perspective of pollution, economics, and product quality, it is very important to find an efficient way to minimize the sulfur content of petroleum products such as gasoline and diesel. In this work, an effective, inexpensive, and simple oxidative desulfurization system based on hydrogen peroxide activation by three dicarboxylic acids which have different carbon numbers (i.e., malonic acid, succinic acid, and glutaric acid) was utilized for the desulfurization of a real diesel sample with high organic sulfur-containing compounds. The desulfurization process was based on the oxidation of sulfur compounds in diesel fuel to the corresponding sulfones followed by acetonitrile extraction of the sulfones. To select the optimal experimental conditions, the effects of several parameters, including temperature, catalyst H2O2 dosages, and treatment time, were investigated. The results showed that the developed system was effective in desulfurizing real diesel fuel with high sulfur content. With an initial total sulfur content of about 8104 mg/L, the desulfurization rate from the diesel sample reached more than 90.9, 88.9, and 93%, using malonic acid, succinic acid, and glutaric acid, respectively. The optimum parameters such as reaction temperature, reaction time, H2O2 (50 w/w%), and carboxylic acid dosage for oxidative desulfurization were determined to be 95 °C, 6 h, 10 mL, and 0.6 g, respectively. The conversion of refractory sulfur compounds into extractable sulfone forms was verified using gas chromatography. Moreover, the kinetic study confirmed that the designed reaction system follows the pseudo-first-order kinetic model.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering