Author:
Zhao Yanxin,Wang Lei,Ma Kuo,Zhang Feng
Abstract
The vertical heterogeneity of continental shale reservoirs is strong, the difference between lithology and stress between layers is large, the weak interface between layers develops, and the hydraulic fracture penetration and expansion are difficult, resulting in poor fracturing transformation effect. In view of this, based on the finite element and cohesive element method, this paper established a fluid-solid coupling model for the hydraulic fracture propagation through the continental shale and studied the control mechanism and influence law of various geological and engineering parameters on the hydraulic fracture propagation through the continental shale reservoir using single factor and orthogonal test analysis methods. Interfacial cementation strength between high layers, high vertical stress difference, low interlaminar stress difference, low tensile strength difference, low elastic modulus difference, high pressure fracturing fluid viscosity, and high injection displacement are conducive to the penetration and expansion of hydraulic fractures. The primary and secondary order of influence degree of each factor is: interlaminar interface cementation strength > interlaminar stress difference/tensile strength difference > fracturing fluid viscosity/injection displacement > vertical stress difference > elastic modulus. In addition, engineering application research has also been carried out, and it is recommended that the injection displacement during early construction should not be less than 3 m3/min, and the fracturing viscosity should not be less than 45 mPa·s. The field application effect is good, which verifies the engineering application value of the model.
Funder
tudy on Control Mechanism and Optimization of Balanced Fracturing with Dense Cutting and Temporary Plugging for Continental Shale Gas Horizontal Wells
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献