Resource Utilization of Lake Sediment to Prepare “Sponge” Light Aggregate: Pore Structure and Water Retention Mechanism Study

Author:

Huang Yu,Li Kunpeng,Zhou Chi,Du Xiaotian,Peng Jiangnan,Liang Baowen,Ding Ziyi,Xiong Wen

Abstract

Nitrogen, phosphorus, and metals’ pollutants discharged from industrial sources eventually accumulate in lake sediment, hence increasing the difficulty of sediment treatment and disposal. In this work, the water storage ceramsite is prepared from dredged lake sediment and cyano-bacterial powder. The effects of pyrolysis temperature and cyanobacterial sediment on the porosity of ceramsite were investigated. The results showed that the pyrolysis of organic matter and the de-composition of compounds or salts can produce gas, causing a rich pore structure inside the ceramsite. When the temperature increased to 1150 °C, vitrification would collapse the pore structure inside the material. At the cyanobacterial-to-sediment ratio of 3:7, the porosity and water absorption of the material could reach 81.82% and 92.45% when the pyrolysis temperature was 500 and 1050 °C, respectively. The internal macropore structure of ceramsite improved the water absorption performance, and the mesoporous structure was responsible for its long water release time and stable water release structure. The ceramsite exhibited a superior metals’ retention effect. Under different pH and temperature conditions, the consolidation rates of Fe, Ni, Mn, Cr, and Pb in ceramsite were all more than 99%, suggesting the safety of the material in environmental applications. This study demonstrates the feasibility of the resourceful production of water storage ceramsite from lake sediment and cyanobacterial slurry, which helps to reduce the impact of solid waste on the environment. Thus, this work provides a practical basis for guiding water storage ceramsite in the construction of sponge cities.

Funder

Guangdong Water Conservancy Science and Technology Innovation Project

Hubei University of Technology 2020 Doctoral Research Startup Fund Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3