Author:
Zhang Xiufang,Liu Yongqiang,Li Jun,Wei Zhuo,Duan Wenyan,Chen Fangyuan
Abstract
Sludge biochar can be used as bio-carrier to enhance aerobic granular sludge, however, its impact on the formation and especially long-term stability of aerobic granules has not been fully investigated. In this paper, aerobic granular sludge was cultivated in two parallel sequencing batch reactors (SBRs), R1 and R2, with and without sludge biochar addition in the activated sludge inoculum, respectively. The sludge characteristics, wastewater treatment performance, and microbial community structure of granular sludge were examined on a 240-day operation, during which aerobic granular sludge in the two reactors experienced dynamic changes including granule formation, maturation, breakage, filamentous proliferation, and recovery. Aerobic granules in R1 with biochar formed two weeks earlier than that in R2, presenting a larger mean size, and higher settling ability and biomass retention in the granule maturation period. Concurrently, aerobic granules in R1 showed higher denitrification ability with over 80% removal efficiency throughout the whole operation period. During the maturation period, the ratio of food to biomass (F/M) in R1 was below 0.5 gCOD/gVSS d while it ranged between 0.5 and 1.0 gCOD/gVSS d in R2 due to lower biomass retention. The elemental analysis showed more Ca and P accumulation in aerobic granular sludge from R1, with 3% Ca and 2.75% P in sludge from R1 and 0.91% Ca and 0.75% P in sludge from R2, respectively. The microbial community in R1 had higher richness, diversity, excretion of extracellular polymer substances (EPSs) and abundance of denitrifying genera than that in R2, supporting its higher stability and denitrification performance. These results demonstrated that aerobic granular sludge formed by using sludge biochar as a carrier for granulation can speed up granule formation, improve denitrification performance, and enhance the long-term stability of aerobic granules. The findings disclosed the enhancing effects of biochar for wastewater treatment by aerobic granular sludge, suggesting the potential of practical application of biochar in aerobic granular sludge-based reactors.
Funder
National Natural Science Foundation of China
Yunnan Major Scientific and Technological Projects
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献