Review of the Hydrogen Evolution Reaction—A Basic Approach

Author:

Ferriday Thomas B.,Middleton Peter Hugh,Kolhe Mohan LalORCID

Abstract

An increasing emphasis on energy storage has resulted in a surge of R&D efforts into producing catalyst materials for the hydrogen evolution reaction (HER) with emphasis on decreasing the usage of platinum group metals (PGMs). Alkaline water electrolysis holds promise for satisfying future energy storage demands, however the intrinsic potential of this technology is impeded by sluggish reaction kinetics. Here, we summarize the latest efforts within alkaline HER electrocatalyst design, where these efforts are divided between three catalyst design strategies inspired by the three prevailing theories describing the pH-dependence of the HER activity. Modifying the electronic structure of a host through codoping and creating specific sites for hydrogen/hydroxide adsorption stand out as promising strategies. However, with the vast amount of possible combinations, emphasis on screening parameters is important. The authors predict that creating a codoped catalyst using the first strategy by screening materials based on their hydrogen, hydroxide and water binding energies, and utilizing the second and third strategies as optimization parameters might yield both active and stable HER catalyst materials. This strategy has the potential to greatly advance the current status of alkaline water electrolysis as an energy storage option.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference130 articles.

1. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions

2. Zum mechanismus der kathodischen wasserstoffabscheidung an quecksilber, silber und kupfer;Gerischer;Z. Elektrochem. Berichte Bunsenges. Phys. Chem.,1955

3. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3