Author:
Meng Xian-long,Liu Cun-liang,Zhang Pu
Abstract
With the increase of combustion temperatures, the thermal radiation effect for hot components in the new generation of aero-engines has become a key factor in the combustion process, cooling structure design, and thermal protection. A radiation loading system can be used as an external heat source to simulate the real thermal environment of hot components in aero-engines. Total receiving power, as well as 3-D heat flux distribution, should better coincide with real conditions. With the aid of freeform optics and the feedback optimization method, the current study develops a concentrating-type radiation heating system fit for the leading-edge surface of a C3X turbine vane. A xenon lamp combined with a freeform reflector was optimized for controllable heat flux. A design method in the area of illumination engineering was innovatively extended for the current model. Considering the effect of polar angular radiative flux distribution of a xenon lamp, a Monte Carlo ray tracing (MCRT) method was adopted to evaluate the optical performance. Feedback modifications based on Bayesian theory were adopted to obtain the optimal shape of the FFS for target heat flux. The current study seeks a feasible way to generate 3-D heat flux distribution for complex curved surfaces, such as turbine vane surfaces, and helps to simulate the real thermal environment of hot components in aero-engines.
Funder
National Natural Science Foundation of China
National Science and Technology Major Project
China Postdoctoral Science Foundation
Shaanxi Province Postdoctoral Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)