Evaluation on the Performance of Automobile Engine Using Air Injection Nozzle in the Intake Manifold

Author:

Kim Taejung,Shin Yunchan,Park Jungsoo,Cho HonghyunORCID

Abstract

In the present study, a nozzle was used to improve the flow performance of an intake manifold, and its effects on the automobile engine output and the exhaust gas were experimentally studied. It was found that the engine output of a vehicle with a mileage of 30,000 km increased by 4.7% and 6.5% when nozzles with diameters of 5 and 2.5 mm were used. In addition, the engine output of a vehicle with a mileage of 180,000 km increased by 3.3% and 13.3% when nozzles with diameters of 5 and 2.5 mm were used compared to those of the same vehicle when no nozzle was used. Thus, using a nozzle for the inflow of outside air created a uniform combustion environment to improve the engine output and reduce harmful exhaust gases, such as hydrocarbon, carbon monoxide, and nitrogen oxides, by generating vortexes inside the intake manifold and increasing the degree of mixing. Furthermore, the smaller nozzle with a diameter of 2.5 mm had greater effects.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3