Abstract
Particle Swarm Optimization (PSO) is a member of the swarm intelligence-based on a metaheuristic approach which is inspired by the natural deeds of bird flocking and fish schooling. In comparison to other traditional methods, the model of PSO is widely recognized as a simple algorithm and easy to implement. However, the traditional PSO’s have two primary issues: premature convergence and loss of diversity. These problems arise at the latter stages of the evolution process when dealing with high-dimensional, complex and electromagnetic inverse problems. To address these types of issues in the PSO approach, we proposed an Improved PSO (IPSO) which employs a dynamic control parameter as well as an adaptive mutation mechanism. The main proposal of the novel adaptive mutation operator is to prevent the diversity loss of the optimization process while the dynamic factor comprises the balance between exploration and exploitation in the search domain. The experimental outcomes achieved by solving complicated and extremely high-dimensional optimization problems were also validated on superconducting magnetic energy storage devices (SMES). According to numerical and experimental analysis, the IPSO delivers a better optimal solution than the other solutions described, particularly in the early computational evaluation of the generation.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献