Numerical Analysis of the Impact of the Location of a Commercial Broiler House on Its Energy Management and Heat Exchange with the Ground

Author:

Nawalany Grzegorz,Lendelova Jana,Sokołowski PawełORCID,Zitnak Miroslav

Abstract

This paper addresses the impact of location on energy management and ground heat transfer in a commercial large-scale broiler house. Four locations in Europe were selected for analysis: Krakow (Poland), Vienna (Austria), Modena (Italy), and Oslo (Norway). An analysis of the impact of location on energy management was performed using the numerical method of computing elemental balances (MEB). WUFIplus® computer software was used to assist in the calculation process. Computer simulations of the effects of location on selected technical factors were performed after validating the computational model. The complex area of building and land was divided into cuboidal balance–difference elements using model discretization. Energy and temperature balance calculations were performed for each balance–difference element assuming a time step every 60 min. Validation of the computational model was performed based on the measured temperature inside and outside the broiler house. The variation in outdoor climate significantly affected the energy flow through the building envelope and ventilation system. Providing that the same material and construction solutions are adopted, a building located in the south of Europe requires 43% less energy for heating compared to a building located in the northern part of the continent. Due to it having the highest solar radiation, the highest energy gains were obtained for the building located in Modena. The buildings located in Krakow and Vienna had a 50% lower yield of thermal energy from the external environment. The percentage of land in the energy balance of the studied building ranged from 8.00 to 8.56%, depending on location. The highest energy gains were obtained for the building located in Modena (4112.8 kWh/a). The buildings located in Krakow and Vienna were characterized by a heat energy yield from the external environment that was two times lower. For the site located in Oslo, it was found that the largest thermal energy gain came from the ground medium located under and surrounding the broiler house (1137 kWh/a). The location of the broiler house significantly affects year-round heating needs. The building located in Oslo required 677,207.2 kWh/a of energy for heating purposes.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference34 articles.

1. Energy Agencyhttps://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/energy/energy-resources/Energy_Efficiency_Marketing_Report_2017.pdf

2. Exploring the localization process of low energy residential buildings: A case study of Korean passive houses

3. A Study on the Building Energy Policy by Analyzing Energy Consumption Factors of Residential Buildingshttp://www.keei.re.kr/web_keei/d_results.nsf/0/8B487340CA0DFABB49258260001B3410/$file/

4. A review on buildings energy consumption information

5. Energy efficient design of building: A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3