Abstract
This paper addresses the impact of location on energy management and ground heat transfer in a commercial large-scale broiler house. Four locations in Europe were selected for analysis: Krakow (Poland), Vienna (Austria), Modena (Italy), and Oslo (Norway). An analysis of the impact of location on energy management was performed using the numerical method of computing elemental balances (MEB). WUFIplus® computer software was used to assist in the calculation process. Computer simulations of the effects of location on selected technical factors were performed after validating the computational model. The complex area of building and land was divided into cuboidal balance–difference elements using model discretization. Energy and temperature balance calculations were performed for each balance–difference element assuming a time step every 60 min. Validation of the computational model was performed based on the measured temperature inside and outside the broiler house. The variation in outdoor climate significantly affected the energy flow through the building envelope and ventilation system. Providing that the same material and construction solutions are adopted, a building located in the south of Europe requires 43% less energy for heating compared to a building located in the northern part of the continent. Due to it having the highest solar radiation, the highest energy gains were obtained for the building located in Modena. The buildings located in Krakow and Vienna had a 50% lower yield of thermal energy from the external environment. The percentage of land in the energy balance of the studied building ranged from 8.00 to 8.56%, depending on location. The highest energy gains were obtained for the building located in Modena (4112.8 kWh/a). The buildings located in Krakow and Vienna were characterized by a heat energy yield from the external environment that was two times lower. For the site located in Oslo, it was found that the largest thermal energy gain came from the ground medium located under and surrounding the broiler house (1137 kWh/a). The location of the broiler house significantly affects year-round heating needs. The building located in Oslo required 677,207.2 kWh/a of energy for heating purposes.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference34 articles.
1. Energy Agencyhttps://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/energy/energy-resources/Energy_Efficiency_Marketing_Report_2017.pdf
2. Exploring the localization process of low energy residential buildings: A case study of Korean passive houses
3. A Study on the Building Energy Policy by Analyzing Energy Consumption Factors of Residential Buildingshttp://www.keei.re.kr/web_keei/d_results.nsf/0/8B487340CA0DFABB49258260001B3410/$file/
4. A review on buildings energy consumption information
5. Energy efficient design of building: A review
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献