Application of the ARMA Model to Describe and Forecast the Flotation Feed Solids Flow Rate

Author:

Joostberens Jarosław,Rybak Aurelia,Pielot JoachimORCID,Dylong ArturORCID

Abstract

The flow rate of solids is subject to random disturbances of the changing feed and can significantly affect the quantitative and qualitative parameters of the coal flotation products. This quantity can be described as a stochastic process. The paper presents the results of the solids flow rate model for coal flotation identification calculations, treated as a disturbance to the process. This is an innovative approach to modelling those quantitative parameters of the flotation feed that are measurably available and whose random changes have a significant impact on the enhancement process under industrial conditions. These include the volumetric flow rate of the feed and, in particular, concentration of solids in the feed. Therefore, it is suggested that random changes of these two parameters of the feed should be mapped using a model of one quantity—the flow rate of solids. This solution is advantageous because this quantity, as a quantitative parameter of the feed, has a significant impact on the course of the coal flotation process. The model is necessary in the process of designing an automatic control system through simulation tests. It allows us to generate a data string simulating random changes to this quantitative parameter of the feed. On this basis, in the simulation model, the correct functioning of the automatic control system is tested, the task of which is to compensate the influence of this disturbance. To determine the empirical model of the feed solids flow rate, measurement data obtained during the registration of the solids concentration and volumetric flow rate of the feed were used in four consecutive periods of operation of an industrial facility of one of the Polish coal processing plants. The time courses of the solids flow rate in the feed were described by ARMA (autoregressive–moving-average model) means, and the two-stage least squares method was used to estimate the model parameters. The results of the identification and verification of the designated model showed the correctness of adopting the third-order ARMA model, with parameters a1 = −1.0682, a2 = −0.2931, a3 = 0.3807, c1 = −0.1588, c2 = −0.2301, c3 = 0.1037, and variance σ2ε = 0.0891, white noise sequence εt, determined on the basis of a series of residuals described by the fifth-order model. It has been shown that the identified model of the flow rate of solids of the feed to flotation as disturbances can be used to develop a predictive model that allows forecasting the modelled quantity with a prediction horizon equal to the sampling period. One-step forecasting based on the determined predictor equation was found to give results consistent with the recorded values of the solid part flow rate of the feed and the extreme values of the prediction error are within the range from −1.08 to 2.90 kg/s.

Funder

Silesian University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of the Dynamic Properties of the Coal Flotation Process as a Control Object with the Use of the Kalman Filter;Energies;2022-10-25

2. Prediction of SSE 50 index based on ARMA model;International Conference on Applied Statistics, Computational Mathematics, and Software Engineering (ASCMSE 2022);2022-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3