Assessment of Cumulative Energy Needs for Chosen Technologies of Cattle Feeding in Barns with Conventional (CFS) and Automated Feeding Systems (AFS)

Author:

Wardal Witold JanORCID,Mazur Kamila EwelinaORCID,Roman Kamil,Roman MichałORCID,Majchrzak Marcin

Abstract

The increasing popularity of automated systems and the increased market share of producers of robotic feeding equipment for cows causes the need for a deeper study of energy demand in such technologies. This article provides an analysis of the inputs of energy accumulated in conventional (CFS) and automated feeding systems (AFS) for cattle. The aim of this is to determine the impact of robotic technologies for the preparation and feeding of fodder on the cumulative energy inputs. The aim of this paper is to investigate the effect of machinery and the equipment applied to the cumulative energy intensity in cattle farming facilities. The cumulative energy consumption for four technologies of automated cattle feeding (AFS) was tested and compared to the energy consumption for six technologies with a conventional feeding system (CFS). The research involved nine cow barn facilities for dairy cows and one for beef cattle. An evaluation has been made for cattle farming structures (milk and meat production) with various mixing and feeding systems for feeds of various concentrations, and keeping system (tied system and free-stall). The cow barns differed in feed mixing, feeding machinery, and equipment. Measurements of live labor inputs and the consumption of electric and mechanical energy carriers were carried out, and the mass of various types of machines and devices with software was taken into account, which became the basis for calculating cumulative energy consumption for individual technologies. The obtained average of electric and mechanical energy inputs for robotic technologies of feeding fodder (AFS) was 0.60025 kWh∙day−1∙LU−1(where LU means Large Animal Unit 500 kg), and it was 39.3% lower than for conventional technologies (CFS) where it was 0.989052 kWh∙day−1∙LU−1. However, taking into account all components of cumulative energy consumption, the average for the group of robotic technologies (AFS) was higher by 35.18% than for conventional technologies (CFS).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Search for New Solutions to Improve the Efficiency of Solar Cells Using in Saint Petersburg and Hong Kong;2023 International Conference on Electrical Engineering and Photonics (EExPolytech);2023-10-19

2. Emergy analysis of pond fish farming – a case study for a large fish farm in Poland;Economics and Environment;2023-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3