Well-Logging Prediction Based on Hybrid Neural Network Model

Author:

Wu Lei,Dong Zhenzhen,Li Weirong,Jing Cheng,Qu Bochao

Abstract

Well-logging is an important formation characterization and resource evaluation method in oil and gas exploration and development. However, there has been a shortage of well-logging data because Well-logging can only be measured by expensive and time-consuming field tests. In this study, we aimed to find effective machine learning techniques for well-logging data prediction, considering the temporal and spatial characteristics of well-logging data. To achieve this goal, the convolutional neural network (CNN) and the long short-term memory (LSTM) neural networks were combined to extract the spatial and temporal features of well-logging data, and the particle swarm optimization (PSO) algorithm was used to determine hyperparameters of the optimal CNN-LSTM architecture to predict logging curves in this study. We applied the proposed CNN-LSTM-PSO model, along with support vector regression, gradient-boosting regression, CNN-PSO, and LSTM-PSO models, to forecast photoelectric effect (PE) logs from other logs of the target well, and from logs of adjacent wells. Among the applied algorithms, the proposed CNN-LSTM-PSO model generated the best prediction of PE logs because it fully considers the spatio-temporal information of other well-logging curves. The prediction accuracy of the PE log using logs of the adjacent wells was not as good as that using the other well-logging data of the target well itself, due to geological uncertainties between the target well and adjacent wells. The results also show that the prediction accuracy of the models can be significantly improved with the PSO algorithm. The proposed CNN-LSTM-PSO model was found to enable reliable and efficient Well-logging prediction for existing and new drilled wells; further, as the reservoir complexity increases, the proxy model should be able to reduce the optimization time dramatically.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

1. Well Logging and Formation Evaluation;Darling,2005

2. Well Logging for Earth Scientists;Ellis,2007

3. Well log normalization: Methods and guidelines;Shier;Petrophys. SPWLA J. Form. Eval. Reserv. Descr.,2004

4. Applications of Artificial Neural Networks in the Petroleum Industry: A Review

5. Learnware: on the future of machine learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3