Abstract
Due to water scarcity, in the last few decades, air-to-water generator (AWG) technology, whose useful effect is the extraction of water from air, has been improved. In particular, in the last few years, advanced AWG integrated systems have been developed. Such systems permit, not only to condense water from air, but also the smart use of the by-side effects of the process in order to partially or totally cover the heating ventilation air conditioning (HVAC) needs of a building. Presently, there are no evaluation tools that permit a complete comparison among AWG machines, taking into account all the useful effects that can be obtained at the same time and with the same energy input. The current work, starting from the need for such a tool, proposes a global index whose formulation considers all useful effects of an integrated system, the energy required to obtain them, and the integration degree of the machine. The index translates into a single number the system global efficiency, by means of a particular combination of existing efficiency indicators. In its extended formulation, it can be applied, not only to AWGs, but also to other HVAC integrated systems, as well as to combinations of non-integrated and integrated solutions. In addition to equations, the paper provides calculation examples and a case study in order to show the practical application and advantages of GEI.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference42 articles.
1. Progress on Household Drinking Water, Sanitation and Hygiene, 2000-2017: Special Focus on Inequalities,2019
2. The United Nations World Water Development Report 2015: Water for a Sustainable World,2015
3. Special Report; Climate Change and Landhttps://www.ipcc.ch/srccl/
4. Advances in atmospheric water generation technologies
5. Waste Management and Operational Energy for Sustainable Buildings: A Review
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献