Comparative Analysis of Injection of Pyrolysis Oil from Plastics and Gasoline into the Engine Cylinder and Atomization by a Direct High-Pressure Injector

Author:

Szwaja MagdalenaORCID,Naber Jeffrey D.,Shonnard David,Kulas DanielORCID,Zolghadr Ali,Szwaja StanislawORCID

Abstract

The article discusses the results of experimental studies on the course of pyrolysis oil injection through the high-pressure injector of a direct-injection engine. The pyrolysis oil used for the tests was derived from waste plastics (mainly high-density polyethylene—HDPE). This oil was then distilled. The article also describes the production technology of this pyrolysis oil on a laboratory scale. It presents the results of the chemical composition of the raw pyrolysis oil and the oil after the distillation process using GC-MS analysis. Fuel injection tests were carried out for the distilled pyrolysis oil and a 91 RON gasoline in order to perform a comparative analysis with the tested pyrolysis oil. In this case, the research was focused on the injected spray cloud analysis. The essential tested parameter was the Sauter Mean Diameter (SMD) of fuel droplets measured at the injection pressure of 400 bar. The analysis showed that the oil after distillation contained a significant proportion of light hydrocarbons similar to gasoline, and that the SMDs for distilled pyrolysis oil and gasoline were similar in the 7–9 µm range. In conclusion, it can be considered that distilled pyrolysis oil from HDPE can be used both as an additive for blending with gasoline in a spark-ignition engine or as a single fuel for a gasoline compression-ignition direct injection engine.

Funder

Polish National Agency for Academic Exchange Iwanowska program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3