A Novel Distributed Consensus-Based Approach to Solve the Economic Dispatch Problem Incorporating the Valve-Point Effect and Solar Energy Sources

Author:

Moin Muhammad,Ahmed Waqas,Rehan Muhammad,Iqbal Muhammad,Ullah NasimORCID,Zeb KamranORCID,Uddin Waqar

Abstract

This research focused on the design of a distributed approach using consensus theory to find an optimal solution of the economic dispatch problem (EDP) by considering the quadratic cost function along with the valve-point effect of generators and renewable energy systems (RESs). A distributed consensus approach is presented for the optimal economic dispatch under a complex valve-point effect by accounting for solar energy in addition to conventional power plants. By employing the beta distribution function and communication topology between generators, a new optimality condition for the dispatch problem was formulated. A novel distributed updation law for generation by considering the communication between generators was provided to deal with the valve-point effect. The convergence of the proposed updation law was proved analytically using Lyapunov stability and graph theory. An algorithm for ensuring a distributed economic dispatch via conventional power plants, integrated with solar energy, was addressed. To the best of the authors’ knowledge, a distributed nonlinear EDP approach for dealing with the valve-point loading issue via nonlinear incremental costs has been addressed for the first time. The designed approach was simulated for benchmark systems with and without a generation capacity constraint, and the results were compared with the existing centralized and distributed strategies.

Funder

Adaptive Controller Design and Validation of Electric Vehicle Charger

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3