In-Situ Generation of Nitrogen-Doped MoS2 Quantum Dots Using Laser Ablation in Cryogenic Medium for Hydrogen Evolution Reaction

Author:

Shahi Fatemeh1ORCID,Parvin Parviz1,Mortazavi Seyedeh2ORCID,Reyhani Ali2,Sadrzadeh Mohtada3ORCID,Moafi Ali1,Ebrahimi Mahdi1,Aghaei Mohammadreza45ORCID

Affiliation:

1. Energy Engineering and Physics Department, Amirkabir University of Technology, Tehran 15119-43943, Iran

2. Faculty of Science, Department of Physics, Imam Khomeini International University, Qazvin 34149-16818, Iran

3. Mechanical Engineering Department, University of Alberta, Edmonton, AB T6G 2R3, Canada

4. Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology (NTNU), 6009 Ålesund, Norway

5. Department of Sustainable Systems Engineering (INATECH), University of Freiburg, 79110 Freiburg, Germany

Abstract

Here, nitrogen doped molybdenum disulfide quantum dots (N-MoS2 QDs) are fabricated by making use of the pulsed laser ablation (PLA) process in liquid nitrogen (LN2) as a dopant agent. In fact, LN2 contributes the rapid condensation of the plasma plume to form MoS2 QDs, optimizing the conditions for the synthesis of N-doped MoS2 with p-type property. The structural/optical features of the synthesized products are studied using transmission electron microscopy (TEM), absorption spectroscopy, photoluminescence (PL) spectroscopy techniques, and X-ray photoelectron spectroscopy (XPS). The TEM image shows the creation of MoS2 QDs with 5.5 nm average size. UV-vis and PL spectroscopy confirm the formation of N-MoS2 QDs according to the dominant peaks. The Tuck plot gives a direct band-gap of 4.34 eV for MoS2 QDs. Furthermore, XPS spectroscopy reveals Mo-N bonding, indicating nitrogen doping as evidence of p-type MoS2 QDs. Thus, PLA provides a single-stage way to the clean and green synthesis of the MoS2 QDs suspension without a need for high vacuum devices and additional chemical components. Regarding the pristine MoS2, the N-MoS2 QDs benefit from a low overpotential of −0.35 V at −10 mA/cm2 per µg alongside a low Tafel slope of 300 mV/dec. Subsequently, the lower Rct value of N-MoS2 QDs verifies the enhancement of the charge transfer kinetics mainly due to the elevated electronic conductivity. Furthermore, the quasi-rectangular cyclic voltammetry (CV) as well as the larger current window demonstrate a notable electrocatalytic activity. The former is based on the enhanced active sites in favor of N-MoS2 QDs against other samples of interest. Thereby, it is discovered that the N-doped MoS2 QD acts as an effective catalyst to notably improve the performance of the hydrogen evolution reaction (HER).

Funder

corresponding authors

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3