Time-Series Well Performance Prediction Based on Convolutional and Long Short-Term Memory Neural Network Model

Author:

Wang Junqiang1,Qiang Xiaolong2,Ren Zhengcheng2,Wang Hongbo2,Wang Yongbo2,Wang Shuoliang3

Affiliation:

1. Jinan Bestune Times Power Technology Co., Ltd., Jinan 250000, China

2. The Second Gas Production Plant of PetroChina Changqing Oilfield Company, Yulin 719000, China

3. School of Energy, Faculty of Engineering, China University of Geosciences, Beijing 100083, China

Abstract

In the past, reservoir engineers used numerical simulation or reservoir engineering methods to predict oil production, and the accuracy of prediction depended more on the engineers’ own experience. With the development of data science, a new trend has arisen to use deep learning to predict oil production from the perspective of data. In this study, a hybrid forecasting model (CNN-LSTM) based on a convolutional neural network (CNN) and a Long Short-Term Memory (LSTM) neural network is proposed and used to predict the production of fractured horizontal wells in volcanic reservoirs. The model solves the limitation of traditional methods that rely on personal experience. First, the production constraints and production data are used to form a feature space, and the abstract semantics of the feature time series are extracted through convolutional neural network, then the LSTM neural network is used to predict the time series. The certain hyperparameters of the whole model are optimized by Particle Swarm Optimization algorithm (PSO). In order to estimate the model, some production dynamics from the Xinjiang oilfield of China are used for comparative analysis. The experimental results show that the CNN-LSTM model is superior to traditional neural networks and conventional decline curves.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3