Knockout of the Aldehyde Dehydrogenase Gene in Fusarium oxysporum for Enhanced Ethanol Yield

Author:

Fan Jinxia,Huang Xiaomei,Zheng Guoxiang,Liu Changyu,Wang MingORCID,Sun Yong,Yang Qian

Abstract

Acetic acid is the primary by-product generated from ethanol production by Fusarium oxysporum using glucose or xylose as a substrate. Aldehyde dehydrogenase (ALDH) is the critical enzyme in acetic acid metabolism. To decrease acetic acid yield in ethanol production, the 1509 bp DNA of aldh, encoding a 502 amino acid protein with a calculated molecular mass of 54.33 kDa and an isoelectric point of 6.21, was cloned from F. oxysporum. Sequence analysis confirmed that the screened proteins belonged to the ALDH family. A knockout vector, ∆aldh, containing positive (hygromycin resistance gene) and negative (thymidine kinase gene from the herpes simplex virus) selectable markers, was constructed. Ethanol production by the mutant (cs28pCAM-Pstal-∆aldh) in glucose- and xylose-containing media was 0.46 and 0.39 g/g, respectively, and these yields were 16.93% and 34.63% higher than those by the wild-type strain (0.393 and 0.289 g/g). Furthermore, the acetic acid yield of the mutant was 3.50 and 3.01 g/L, respectively, showing a 23.10% and 39.55% decrease compared with the wild-type strain (4.308 and 4.196 g/L). The biomass of the mutant (4.05 and 4.52 g/L) was lower than that of the wild-type strain (4.71 and 5.97 g/L). These results demonstrated the potential use of the genetically stable mutant for industrial bioethanol production.

Funder

Key Scientific and Technological Project of Heilongjiang Province of China

Science and Technology Program in Educational Department of Heilongjiang Province

Postdoctoral Science Starting Funds Program of Heilongjiang Province

Doctoral Starting Funds Program of Northeast Agricultural University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3