Luminescence of Mn4+ in a Zero-Dimensional Organic–Inorganic Hybrid Phosphor [N(CH3)4]2ZrF6 for Dual-Mode Temperature Sensing

Author:

Wang Jing,Lu Jitao,Wu Yahong,Song Mingjun

Abstract

Searching for new low-dimensional organic–inorganic hybrid phosphors is of great significance due to their unique optical properties and wide applications in the optoelectronic field. In this work, we report a Mn4+ doped zero-dimensional organic–inorganic hybrid phosphor [N(CH3)4]2ZrF6, which was synthesized by a wet chemical method. The crystal structure, thermal stability, and optical properties were systemically investigated by means of XRD, SEM, TG-DTA, FTIR, DRS, emission spectra, excitation spectra, as well as decay curves. Narrow red emission with high color purity can be observed from [N(CH3)4]2ZrF6:Mn4+ phosphor, which maintains effective emission intensity even at room temperature, indicating its potential practical application in WLEDs. In the temperature range of 13–295 K, anti-Stokes and Stokes sidebands of Mn4+ ions exhibit different temperature responses. By applying the emission intensity ratio of anti-Stokes vs. Stokes sidebands as temperature readout, an optical thermometer with a maximum absolute sensitivity of 2.13% K−1 and relative sensitivity of 2.47% K−1 can be obtained. Meanwhile, the lifetime Mn4+ ions can also be used for temperature sensing with a maximum relative sensitivity of 0.41% K−1, demonstrating its potential application in optical thermometry.

Funder

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3