A Statistical Porosity Characterization Approach of Carbon-Fiber-Reinforced Polymer Material Using Optical Microscopy and Neural Network

Author:

Eliasson SaraORCID,Karlsson Hagnell MathildaORCID,Wennhage PerORCID,Barsoum Zuheir

Abstract

The intensified pursuit for lightweight solutions in the commercial vehicle industry increases the demand for method development of more advanced lightweight materials such as Carbon-Fiber-Reinforced Composites (CFRP). The behavior of these anisotropic materials is challenging to understand and manufacturing defects could dramatically change the mechanical properties. Voids are one of the most common manufacturing defects; they can affect mechanical properties and work as initiation sites for damage. It is essential to know the micromechanical composition of the material to understand the material behavior. Void characterization is commonly conducted using optical microscopy, which is a reliable technique. In the current study, an approach based on optical microscopy, statistically characterizing a CFRP laminate with regard to porosity, is proposed. A neural network is implemented to efficiently segment micrographs and label the constituents: void, matrix, and fiber. A neural network minimizes the manual labor automating the process and shows great potential to be implemented in repetitive tasks in a design process to save time. The constituent fractions are determined and they show that constituent characterization can be performed with high accuracy for a very low number of training images. The extracted data are statistically analyzed. If significant differences are found, they can reveal and explain differences in the material behavior. The global and local void fraction show significant differences for the material used in this study and are good candidates to explain differences in material behavior.

Funder

VINNOVA

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3