Exploiting Big Data for Experiment Reporting: The Hi-Drive Collaborative Research Project Case

Author:

Capello Alessio1ORCID,Fresta Matteo1ORCID,Bellotti Francesco1ORCID,Haghighi Hamed2,Hiller Johannes3ORCID,Mozaffari Sajjad2,Berta Riccardo1ORCID

Affiliation:

1. Department of Electrical, Electronic and Telecommunication Engineering (DITEN), University of Genoa, Via Opera Pia 11A, 16145 Genoa, Italy

2. WMG, University of Warwick, Coventry CV4 7AL, UK

3. Institute for Automotive Engineering (IKA), RWTH Aachen University, Steinbachstr. 7, 52074 Aachen, Germany

Abstract

As timely information about a project’s state is key for management, we developed a data toolchain to support the monitoring of a project’s progress. By extending the Measurify framework, which is dedicated to efficiently building measurement-rich applications on MongoDB, we were able to make the process of setting up the reporting tool just a matter of editing a couple of .json configuration files that specify the names and data format of the project’s progress/performance indicators. Since the quantity of data to be provided at each reporting period is potentially overwhelming, some level of automation in the extraction of the indicator values is essential. To this end, it is important to make sure that most, if not all, of the quantities to be reported can be automatically extracted from the experiment data files actually used in the project. The originating use case for the toolchain is a collaborative research project on driving automation. As data representing the project’s state, 330+ numerical indicators were identified. According to the project’s pre-test experience, the tool is effective in supporting the preparation of periodic progress reports that extensively exploit the actual project data (i.e., obtained from the sensors—real or virtual—deployed for the project). While the presented use case concerns the automotive industry, we have taken care that the design choices (particularly, the definition of the resources exposed by the Application Programming Interfaces, APIs) abstract the requirements, with an aim to guarantee effectiveness in virtually any application context.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3