Transform-Based Multiresolution Decomposition for Degradation Detection in Cellular Networks

Author:

Fortes SergioORCID,Muñoz PabloORCID,Serrano Inmaculada,Barco Raquel

Abstract

Anomaly detection in the performance of the huge number of elements that are part of cellular networks (base stations, core entities, and user equipment) is one of the most time consuming and key activities for supporting failure management procedures and ensuring the required performance of the telecommunication services. This activity originally relied on direct human inspection of cellular metrics (counters, key performance indicators, etc.). Currently, degradation detection procedures have experienced an evolution towards the use of automatic mechanisms of statistical analysis and machine learning. However, pre-existent solutions typically rely on the manual definition of the values to be considered abnormal or on large sets of labeled data, highly reducing their performance in the presence of long-term trends in the metrics or previously unknown patterns of degradation. In this field, the present work proposes a novel application of transform-based analysis, using wavelet transform, for the detection and study of network degradations. The proposed system is tested using cell-level metrics obtained from a real-world LTE cellular network, showing its capabilities to detect and characterize anomalies of different patterns and in the presence of varied temporal trends. This is performed without the need for manually establishing normality thresholds and taking advantage of wavelet transform capabilities to separate the metrics in multiple time-frequency components. Our results show how direct statistical analysis of these components allows for a successful detection of anomalies beyond the capabilities of detection of previous methods.

Funder

European Regional Development Fund

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hidden Markov models for predicting cell-level mobile networks performance degradation;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-09

2. Unsupervised Anomaly Detection for Throughput Enhancement in Mobile Networks;2023 International Conference on Computer and Applications (ICCA);2023-11-28

3. Social-Aware Load Balancing System for Crowds in Cellular Networks;IEEE Access;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3