Credibility Analysis of User-Designed Content Using Machine Learning Techniques

Author:

Gayakwad MilindORCID,Patil Suhas,Kadam Amol,Joshi Shashank,Kotecha KetanORCID,Joshi RahulORCID,Pandya SharnilORCID,Gonge Sudhanshu,Rathod Suresh,Kadam Kalyani,Shelke Maya

Abstract

Content is a user-designed form of information, for example, observation, perception, or review. This type of information is more relevant to users, as they can relate it to their experience. The research problem is to identify the credibility and the percentage of credibility as well. Assessment of such content is important to convey the right understanding of the information. Different techniques are used for content analysis, such as voting the content, Machine Learning Techniques, and manual assessment to evaluate the content and the quality of information. In this research article, content analysis is performed by collecting the Movie Review dataset from Kaggle. Features are extracted and the most relevant features are shortlisted for experimentation. The effect of these features is analyzed by using base regression algorithms, such as Linear Regression, Lasso Regression, Ridge Regression, and Decision Tree. The contribution of the research is designing a heterogeneous ensemble regression algorithm for content credibility score assessment, which combines the above baseline methods. Moreover, these factors are also toned down to obtain the values closer to Gradient Descent minimum. Different forms of Error Loss, such as Mean Absolute Error, Mean Squared Error, LogCosh, Huber, and Jacobian, and the performance is optimized by introducing the balancing bias. The accuracy of the algorithm is compared with induvial regression algorithms and ensemble regression separately; this accuracy is 96.29%.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3