Surrogate-Assisted Multi-Objective Optimisation of Transcritical Carbon Dioxide Scroll Expander Flank Clearance Based on Computational Fluid Dynamics

Author:

Du Yuheng1,Li Shuang2,Pekris Michael1,Li Wei2,Tian Guohong1

Affiliation:

1. School of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, UK

2. Control and Simulation Center, Harbin Institute of Technology, Harbin 150006, China

Abstract

Transcritical carbon dioxide waste heat recovery systems and the construction of scroll expanders have recently been hot topics. The flank clearance, located between the orbiting and fixed scroll, has a vital impact on the scroll expander performance. This paper estimates the effect of the flank clearance on the expander’s thermodynamic performance (first-law efficiency) based on computational fluid dynamics (CFD) simulations. The manufacturing cost of different flank clearances is also considered to enhance the feasibility of the machinery design. The computational cost for different flank clearance cases is significantly reduced with a surrogate-assisted multi-objective optimisation algorithm (SAMOA), which also supports modelling the trade-off relationship between manufacturing cost and machinery efficiency. The results indicated that an increasing flank clearance negatively affects the first-law thermal efficiency. The efficiency decreased from 87.41% to 44.83% moving from 20 to 200 μm flank clearances. The SAMOA successfully reduced the computational cost of the dynamic mesh CFD model from 90 h to 15 s with 0.6% discrepancy. The final Pareto solutions presented a clear trade-off relationship between the first-law efficiency and manufacturing cost and promised a diversity of optimum solutions. The “knee points” for the relationship were 25, 55, and 127 μm, which provided flexible clearance choices based on the importance of either machinery efficiency or manufacturing cost.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3