Optimal Sizing of Photovoltaic/Energy Storage Hybrid Power Systems: Considering Output Characteristics and Uncertainty Factors

Author:

Liu Ye1,Zhong Yiwei1,Tang Chaowei1

Affiliation:

1. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

Abstract

The integration of PV and energy storage systems (ESS) into buildings is a recent trend. By optimizing the component sizes and operation modes of PV-ESS systems, the system can better mitigate the intermittent nature of PV output. Although various methods have been proposed to optimize component size and achieve online energy management in PV-ESS systems, the optimal interconnection between them has received less attention. In order to maximize the effectiveness of systems with limited component sizes and address the impact of uncertainty on the system, an optimization framework is proposed for determining the optimal size of the PV-ESS system. The proposed framework consists of five parts: determination of optimal size, analysis of component output characteristics, system state prediction, parameter calibration of energy management strategies, and update of system components output features, and it considers uncertain factors, including climate, different components, and battery degradation caused by irregular charging and discharging, to establish the model for energy saving. To validate the results, four different climates in a year were considered. The obtained results indicate that the proposed framework can effectively achieve the optimal working state of the system, realizing a matching degree of 94.55% between the offline size optimization and online management strategy. The proposed framework’s universality and effectiveness were demonstrated through simulation analysis across four cities with different climates in China.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3