Abstract
Assessment of the mechanical performance of internally-defected components or struc-tures is of crucial importance to many industrial fields such as aerospace, automobile, marine, construction etc. Most of the studies available in the literature include only analytical or numerical solutions, due to difficulty in the manufacturing of a testing sample with a specific internal defect geometry for experimental evaluations. In this study, Fusion Deposition Modeling (FDM) was utilized in the 3D-printing of Polylactic Acid (PLA) samples with internal cracks, aiming to assess their impact on the samples’ mechanical performance. The defect geometry, orientation, location along the sample gauge length and the influence of the process parameters, such as the infill percentage and the material color, were investigated. The influence of the internal defects is more pronounced for a 100% infill rate if compared with a 50% infill rate as a consequence of the porosity. A maximum drop of ~14% in the peak load of defect-free samples was recorded due to the presence of the internal defect. Moreover, the additive color to the PLA material might contribute to the material strength. Generally, the findings of this work could open another door for utilizing the additive manufacturing in many research areas, with potential industrial applications relevant to the assessment of internally-defected materials.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献