Abstract
Ground-based tomographic radar measurements provide valuable knowledge about the electromagnetic scattering mechanisms and temporal variations of an observed scene and are essential in preparation for space-borne tomographic synthetic aperture radar (SAR) missions. Due to the short range between the radar antennas and a scene being observed, the tomographic radar observations are affected by several systematic errors. This article deals with the modelling and calibration of three systematic errors: mutual antenna coupling, magnitude and phase errors and the pixel-variant impulse response of the tomographic image. These errors must be compensated for so that the tomographic images represent an undistorted rendering of the scene reflectivity. New calibration methods were described, modelled and validated using experimental data. The proposed methods will be useful for future ground-based tomographic radar experiments in preparation for space-borne SAR missions.
Funder
European Space Agency
Swedish National Space Agency
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献