Accurate Building Extraction from Fused DSM and UAV Images Using a Chain Fully Convolutional Neural Network

Author:

Liu WeiORCID,Yang MengYuan,Xie Meng,Guo Zihui,Li ErZhu,Zhang Lianpeng,Pei TaoORCID,Wang Dong

Abstract

Accurate extraction of buildings using high spatial resolution imagery is essential to a wide range of urban applications. However, it is difficult to extract semantic features from a variety of complex scenes (e.g., suburban, urban and urban village areas) because various complex man-made objects usually appear heterogeneous with large intra-class and low inter-class variations. The automatic extraction of buildings is thus extremely challenging. The fully convolutional neural networks (FCNs) developed in recent years have performed well in the extraction of urban man-made objects due to their ability to learn state-of-the-art features and to label pixels end-to-end. One of the most successful FCNs used in building extraction is U-net. However, the commonly used skip connection and feature fusion refinement modules in U-net often ignore the problem of feature selection, and the ability to extract smaller buildings and refine building boundaries needs to be improved. In this paper, we propose a trainable chain fully convolutional neural network (CFCN), which fuses high spatial resolution unmanned aerial vehicle (UAV) images and the digital surface model (DSM) for building extraction. Multilevel features are obtained from the fusion data, and an improved U-net is used for the coarse extraction of the building. To solve the problem of incomplete extraction of building boundaries, a U-net network is introduced by chain, which is used for the introduction of a coarse building boundary constraint, hole filling, and "speckle" removal. Typical areas such as suburban, urban, and urban villages were selected for building extraction experiments. The results show that the CFCN achieved recall of 98.67%, 98.62%, and 99.52% and intersection over union (IoU) of 96.23%, 96.43%, and 95.76% in suburban, urban, and urban village areas, respectively. Considering the IoU in conjunction with the CFCN and U-net resulted in improvements of 6.61%, 5.31%, and 6.45% in suburban, urban, and urban village areas, respectively. The proposed method can extract buildings with higher accuracy and with clearer and more complete boundaries.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

State Key Laboratory of Resources and Environmental Information System

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3