Identification of Mine Mixed Water Inrush Source Based on Genetic Algorithm and XGBoost Algorithm: A Case Study of Huangyuchuan Mine

Author:

Li Xiang,Dong Donglin,Liu Kun,Zhao Yi,Li Minmin

Abstract

Mine water inrush disaster seriously threatens the production of coal mine. Rapid and accurate identification of mine water inrush sources is a key premise for mine water disaster prevention. The conventional research on the identification of water inrush source has focused on a single source, and the identification of mixed water samples from multi-source aquifers in deep coal mining environment is not yet fully explored. In this study, absorption spectrum technology was introduced into the identification of water inrush sources. The absorption spectra of the water samples with different mixing ratios were prepared using the ultraviolet and visible spectrophotometry (UV–Vis) spectrophotometer. In addition, spectral data preprocessing such as scattering correction, baseline correction, smoothing and denoising, and data enhancement were conducted to reduce the influence of experimental error, environment, radiation, molecular interaction, and other factors on the spectral data. Furthermore, a genetic algorithm (GA) was used to improve the seven parameters of the extreme gradient boosting (XGBoost) algorithm, such as learning rate, base model selection, tree parameters, regularization parameters, and iteration times. The deep-learning classifier of mine mixed water sources based on GA-XGBoost was established and used to identify 66 groups of mixed water sources in the Huangyuchuan Mine. The simulation results show that spectral preprocessing and normalization enhancement effectively improved the accuracy of the discriminant model. After 100 cross-validations, the average recognition accuracy of the GA-XGBoost model was 94%, and the results were accurate and reliable. This study provides a new direction and method for the identification of water inrush sources, particularly for mixed water inrush sources. It may also serve as a technical reference for decision-makers to formulate effective coal mine water inrush prevention and control programs and for mine water disaster prevention in similar coalfields in North China.

Funder

State Key Laboratory of Resources and Environmental Information System

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference49 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3