Long-Term Performance of Anti-Freeze Protection System of a Solar Thermal System

Author:

Pater SebastianORCID

Abstract

In a moderate, transitory climate, to prevent freezing of outdoor pipes and collectors in solar thermal systems, anti-freezing fluids are commonly used. There is little experience of using water without any additives as a solar thermal fluid in such a climate. Based on these findings, to fill the knowledge gap this article presents the long-term results of thermal performance and anti-freeze protection of a solar heating system with heat pipe evacuated tube collectors with water as a solar thermal fluid. The operation of this system under real conditions was analysed for five years in southern Poland. The annual value of solar insolation ranged from 839 to almost 1000 kWh/m2. The monthly efficiency of the solar collectors from March to October was usually higher than 25%, and the lowest was between November and January. The anti-freeze protection system consumed annually from 7 to 13% of the heat generated by the collectors in the installation. Supporting the operation of the central heating system in the building during the winter season highly improved the efficiency of the solar collectors. Results show that it is possible to use water without any additives as a solar thermal fluid in a moderate, transitory climate.

Funder

Politechnika Krakowska

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3