Optimization Using Response Surface Methodology (RSM) for Biodiesel Synthesis Catalyzed by Radiation-Induced Kenaf Catalyst in Packed-Bed Reactor

Author:

Zabaruddin Nur HaryaniORCID,Abdullah Luqman ChuahORCID,Mohamed Nor HasimahORCID,Choong Thomas Shean Yaw

Abstract

In this study, continuous transesterification of refined palm oil by using radiation-induced kenaf denoted as anion exchange kenaf catalyst in a packed-bed reactor was developed. The application of full factorial design and response surface methodology (RSM) based on the central composite design (CCD) was used to design the process and analyzed the effect of reactor operating variables such as packed bed height, the molar ratio of oil to ethanol and volumetric flow rate on the production of fatty acid ethyl ester (FAEE). The statistical analysis results showed that all three operating parameters affect the reaction efficiency significantly. The optimum conditions were determined to be 9.81 cm packed bed height, a molar ratio at 1:50, and a volumetric flow rate of 0.38 mL min−1. Three tests were carried out to verify the optimum combination of process parameters. The predicted and actual values of molar conversion fatty acid ethyl ester (FAEE) molar conversion were 97.29% and 96.87%, respectively. The reusability of kenaf fiber-based catalysts is discussed with a specially highlighted on fiber dissolution, leaching, and fouling. Nevertheless, the impurities absorption properties of anion exchange kenaf catalyst towards biodiesel production could eventually simplify the biodiesel purification steps and cost. In sum, anion exchange kenaf catalyst shows the potential commercial applications to transesterification of FAEE in a packed-bed reactor.

Funder

Ministry of Higher Education, Malaysia

Kementerian Sains, Teknologi dan Inovasi

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3