Life Cycle Assessment Analysis of Alfalfa and Corn for Biogas Production in a Farm Case Study

Author:

Filippa Fabiola,Panara FrancescoORCID,Leonardi Daniela,Arcioni Livia,Calderini OrnellaORCID

Abstract

In the last years the greenhouse effect has been significantly intensified due to human activities, generating large additional amounts of Greenhouse gases (GHG). The fossil fuels are the main causes of that. Consequently, the attention on the composition of the national fuel mix has significantly grown, and the renewables are becoming a more significant component. In this context, biomass is one of the most important sources of renewable energy with a great potential for the production of energy. The study has evaluated, through an LCA (Life Cycle Assessment) study, the attitude of alfalfa (Medicago sativa) as “no food” biomass alternative to maize silage (corn), in the production of biogas from anaerobic digestion. Considering the same functional unit (1 m3 of biogas from anaerobic digestion) and the same time horizon, alfalfa environmental impact was found to be much comparable to that of corn because it has an impact of about 15% higher than corn considering the total score from different categories and an impact of 5% higher of corn considering only greenhouse gases. Therefore, the analysis shows a similar environmental load in the use of alfalfa biomass in energy production compared to maize. Corn in fact, despite a better yield per hectare and yield of biogas, requires a greater amount of energy inputs to produce 1m3 of biogas, while alfalfa, which requires less energy inputs in its life cycle, has a lower performance in terms of yield. The results show the possibility to alternate the two crops for energy production from an environmental perspective.

Funder

Regione Umbria

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference63 articles.

1. Rapporti ISPRA 220/2015 Emissioni Nazionali di Gas Serra Fattori Determinanti e Confronto con i Paesi Europei;Caputo,2015

2. The role of renewable energy in the global energy transformation

3. Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty

4. Energy policy: Push renewables to spur carbon pricing

5. 2020 Climate & Energy Package|Climate Action https://ec.europa.eu/clima/policies/strategies/2020_en

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3