Fuzzy Control Strategy Applied to an Electromagnetic Frequency Regulator in Wind Generation Systems

Author:

Crisóstomo Daniel C. C.ORCID,do Nascimento Thiago F.ORCID,Nunes Evandro A. D. F.ORCID,Villarreal ElmerORCID,Pinheiro RicardoORCID,Salazar AndrésORCID

Abstract

This paper presents the implementation of a fuzzy control strategy for speed regulation of an electromagnetic frequency regulator (EFR) prototype, aiming to eliminate the dependence on knowledge of physical parameters in the most diverse operating conditions. Speed multiplication is one of the most important steps in wind power generation. Gearboxes are generally used for this purpose. However, they have a reduced lifespan and a high failure rate, and are still noise sources. The search for new ways to match the speed (and torque) between the turbine and the generator is an important research area to increase the energy, financial, and environmental efficiency of wind systems. The EFR device is an example of an alternative technology that this team of researchers has proposed. It considers the main advantages of an induction machine with the rotor in a squirrel cage positively. In the first studies, the EFR control strategy consisted of the conventional PID controllers, which have several limitations that are widely discussed in the literature. This strategy also limits the EFR’s performance, considering its entire operating range. The simulation program was developed using the Matlab/Simulink platform, while the experimental results were obtained in the laboratory emulating the EFR-based system. The EFR prototype has 2 poles, a nominal power of 2.2 kW, and a nominal frequency of 60 Hz. Experimental results were presented to validate the efficiency of the proposed control strategy.

Funder

Federal University of Rio Grande do Norte

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis and Modeling of an Electromagnetic Speed Regulator for Wind Energy Conversion Systems;2022 IEEE International Conference on Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA);2022-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3