A Game Changer: Microfluidic Technology for Enhancing Biohydrogen Production—Small Size for Great Performance

Author:

Šalić AnitaORCID,Zelić BrunoORCID

Abstract

One of the approaches widely used today to intensify processes is their miniaturization. Small, compact, portable devices that can be used directly in the field will become popular in the near future. The use of microstructured devices is becoming more widespread in diagnostics, analytics, and production, so there is no doubt that the same approach is being applied to energy production. The question is whether it is possible to create an energy production system that has all the external characteristics of a miniaturized device but is sustainable, durable, environmentally friendly, based on renewable sources, and cost-effective. The first challenge is to choose a production route, an energy source that has the required characteristics, and then to adapt this production on a microscale. Among the different energy sources, biohydrogen meets most of the requirements. The carbon emissions of biohydrogen are much lower, and its production is less energy-intensive than conventional hydrogen production. Moreover, it can be produced from renewable energy sources. The challenge today is to make this process sustainable due to the low substrate conversion, production rate, and yield. Microfluidic systems are one of the technologies that could address the above shortcomings of the current biohydrogen production processes. The combination of microdevices and biohydrogen production opens up new possibilities for energy production. Although this area of research is growing, the focus of this review is on the possibility of using microfluidics for biohydrogen production.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3