Experimental Study on Deformation Behavior and Permeability Evolution of Sandstone Responding to Mining Stress

Author:

Liu Yang,Zhang Tong,Wu Jun,Song Zhengyang,Wang FeiORCID

Abstract

Mining-induced hydromechanical behavior of sandstone is critical to mining safety and disaster prevention. To investigate the evolution behavior of the mechanical and permeability properties of sandstone, mining-induced stress was imitated by increasing axial stress and decreasing confining stress, and a set of hydromechanical experiments were further performed, incorporating the effect of in situ stress, pore pressure, and mining stress. The results show the similar variation tendencies of the deformation and permeability of sandstone under different loading paths of in situ stress and pore pressure. Most sandstone samples maintain a compression state for the peak stress condition. The failure mode evolved from shear failure to shear–tension failure with the increase in in situ stress. The stress-relief effect significantly effects the permeability, since the permeability of sandstone increases exponentially with decreasing effective confining stress. The growth rate of permeability in Stage II is significantly greater than that in Stage I. One order of magnitude of permeability was presented at the peak stress situation. A fitting exponential model based on the alteration of effective confining stress was proposed to describe the permeability evolution dominated by the stress-relief effect, and the discovered permeability model can accurately describe the experimental results. The research results provide significant guidance for understanding the hydromechanical behavior and water hazard prevention for underground coal mines.

Funder

National Youth Science Foundation

Anhui Provincial Natural Science Foundation

Anhui University Scientific Research Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference30 articles.

1. Study on rock mechanics in deep mining engineering;He;Chin. J. Rock Mech. Eng.,2005

2. Groundbreaking theoretical and technical conceptualization of fluidized mining of deep underground solid mineral resources

3. Research framework and anticipated results of deep rock mechanics and mining theory;Xie;Adv. Eng. Sci.,2017

4. Draft ISRM Suggested Method for the Complete Stress-Strain Curve for Intact Rock in Uniaxial Compression;Fairhurst;Int. J. Rock Mech. Min. Sci.,1999

5. Effective stress law for the permeability of a limestone

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3