How to Train an Artificial Neural Network to Predict Higher Heating Values of Biofuel

Author:

Matveeva AnnaORCID,Bychkov AlekseyORCID

Abstract

Plant biomass is one of the most promising and easy-to-use sources of renewable energy. Direct determination of higher heating values of fuel in an adiabatic calorimeter is too expensive and time-consuming to be used as a routine analysis. Indirect calculation of higher heating values using the data from the ultimate and proximate analyses is a more rapid and less equipment-intensive method. This study assessed the fitting performance of a multilayer perceptron as an artificial neural network for estimating higher heating values of biomass. The analysis was conducted using a specially gathered large and heterogeneous dataset (720 biomass samples) that included the experimental data of ultimate and proximate analysis on grass plants, peat, husks and shells, organic residues, municipal solid wastes, sludge, straw, and untreated wood. The quantity and preprocessing of data (namely, rejection of dependent and noisy variables; dataset centralization) were shown to make a major contribution to prediction accuracy improvement. In particular, it was demonstrated that 550 samples are sufficient to ensure convergence of the algorithm; carbon and hydrogen contents are sufficient ultimate analysis data; and volatile matters can be excluded from proximate analysis. The minimal required complexity of neural network is ~50 neurons.

Funder

Russian Science Foundation

state assignment to the Institute of Solid State Chemistry and Mechanochemistry SB RAS

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3