Author:
Essaghouri Abdellah,Zeng Zezhi,Zhao Bingguo,Hao Changkun,Qian Yuping,Zhuge Weilin,Zhang Yangjun
Abstract
Improving the power density of SOFC stacks will accelerate their integration into mobile applications. We developed a 3D Multiphysics model validated by experimental results from early studies to examine the effect of radial and circumferential flows on the power density improvements in a micro-tubular SOFC. The inserts were placed inside the fuel channel to generate flow in different directions. The effects of geometric parameters of these inserts on flow and mass transfer in the fuel channel and porous anode were analyzed. We demonstrate that the radial flow enables the fuel to penetrate directly into the porous anode, increasing the local fuel concentration and enhancing the fuel diffusion to the anode triple-phase boundaries. We found that the circumferential flow has a negligible effect on the diffusion process in the anode and on the increase in power density. The impact of local convective and diffusive mass transfer mechanisms on power density improvement is analyzed using the local Péclet number along the axial direction. Enlarging the radial velocity component perpendicular to the porous anode could effectively increase the power density of the micro-tubular SOFC by 37%. This study helps improve our understanding of mass transfer in fuel channels and helps build a foundation for SOFC channel designs and optimizations.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献