Parametric Performance Analysis of the Cooling Potential of Earth-to-Air Heat Exchangers in Hot and Humid Climates

Author:

Bughio MushkORCID,Bahale Swati,Mahar Waqas AhmedORCID,Schuetze ThorstenORCID

Abstract

Earth-to-air heat exchangers (EAHEs) are widely used to reduce the indoor temperature and associated cooling energy demand of buildings. This study investigated the potential reduction in indoor temperatures via energy-efficient ventilation through EAHEs in an existing architectural campus building (ACB) with an energy-efficient renovated building envelope in the hot and humid climate of Karachi, Pakistan. The building information modeling (BIM) program Autodesk Revit was used to develop a virtual ACB BIM model. An EnergyPlus parametric analysis of the ACB BIM model in DesignBuilder facilitated quantification of the influences of operating parameters such as pipe installation depth and pipe diameter for EAHEs with similar total pipe lengths and air-exchange rates on the performance of the EAHEs during the cooling season. A 3 m deep and 0.1 m diameter pipe layout in open space significantly reduces indoor temperature via a specific duct layout in an exemplary ACB. The results show that a pipe diameter above 0.1 m is unsuitable because of the reduction in convective heat transfer due to the increase in the pipe’s surface area and the decrease in pressure in the pipe. The findings of this study can be used to improve the indoor thermal comfort of buildings in climates with comparable properties.

Funder

Higher Education Commission (HEC) of Pakistan, HRDI-UESTP scholarship program Batch- III

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference60 articles.

1. Global Status Report for Buildings and Construction 2019,2019

2. Reducing the operational energy demand in buildings using building information modeling tools and sustainability approaches

3. Evaluation of energy efficient design strategies for different climatic zones: Comparison of thermal performance of buildings in temperate-humid and hot-dry climate

4. A review on buildings energy consumption information

5. Reducing the operational energy consumption in buildings by passive cooling techniques using building information modeling tools;Ahsan;Int. J. Renew. Energy Res.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3