Assessment of Accuracy of Moderate-Resolution Imaging Spectroradiometer Sea Surface Temperature at High Latitudes Using Saildrone Data

Author:

Jia Chong1ORCID,Minnett Peter J.2ORCID,Szczodrak Malgorzata2

Affiliation:

1. Graduate Program in Meteorology and Physical Oceanography, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149-1031, USA

2. Department of Ocean Sciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149-1031, USA

Abstract

The infrared (IR) satellite remote sensing of sea surface skin temperature (SSTskin) is challenging in the northern high-latitude region, especially in the Arctic because of its extreme environmental conditions, and thus the accuracy of SSTskin retrievals is questionable. Several Saildrone uncrewed surface vehicles were deployed at the Pacific side of the Arctic in 2019, and two of them, SD-1036 and SD-1037, were equipped with a pair of IR pyrometers on the deck, whose measurements have been shown to be useful in the derivation of SSTskin with sufficient accuracy for scientific applications, providing an opportunity to validate satellite SSTskin retrievals. This study aims to assess the accuracy of MODIS-retrieved SSTskin from both Aqua and Terra satellites by comparisons with collocated Saildrone-derived SSTskin data. The mean difference in SSTskin from the SD-1036 and SD-1037 measurements is ~0.4 K, largely resulting from differences in the atmospheric conditions experienced by the two Saildrones. The performance of MODIS on Aqua and Terra in retrieving SSTskin is comparable. Negative brightness temperature (BT) differences between 11 μm and 12 μm channels are identified as being physically based, but are removed from the analyses as they present anomalous conditions for which the atmospheric correction algorithm is not suited. Overall, the MODIS SSTskin retrievals show negative mean biases, −0.234 K for Aqua and −0.295 K for Terra. The variations in the retrieval inaccuracies show an association with diurnal warming events in the upper ocean from long periods of sunlight in the Arctic. Also contributing to inaccuracies in the retrieval is the surface emissivity effect in BT differences characterized by the Emissivity-introduced BT difference (EΔBT) index. This study demonstrates the characteristics of MODIS-retrieved SSTskin in the Arctic, at least at the Pacific side, and underscores that more in situ SSTskin data at high latitudes are needed for further error identification and algorithm development of IR SSTskin.

Funder

NASA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3