Ice Thickness Measurement and Volume Modeling of Muztagh Ata Glacier No.16, Eastern Pamir

Author:

Yang Yefei12,Li Zhongqin1234,Wang Feiteng1,Zhao Weibo12ORCID,Mu Jianxin1ORCID,Jin Shuang5,Wang Fanglong1,Zhang Xin1,Liang Qibin3,Zhan Zexin3,Ma Hao3

Affiliation:

1. State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730099, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China

4. College of Science, Shihezi University, Shihezi 832000, China

5. School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China

Abstract

As a heavily glaciated region, the Eastern Pamir plays a crucial role in regional water supply. However, considerable ambiguity surrounds the distribution of glacier ice thickness and the details of ice volume. Accurate data at the local scale are largely insufficient. In this study, ground-penetrating radar (GPR) was applied to assess the ice thickness at Muztagh Glacier No.16 (MG16) in Muztagh Ata, Eastern Pamir, for the first time, detailing findings from four distinct profiles, bridging the gap in regional measurements. We utilized a total of five different methods based on basic shear stress, surface velocity, and mass conservation, aimed at accurately delineating the ice volume and distribution for MG16. Verification was conducted using measured data, and an aggregated model outcome provided a unified view of ice distribution. The different models showed good agreement with the measurements, but there were differences in the unmeasured areas. The composite findings indicated the maximum ice thickness of MG16 stands at 115.87 ± 4.55 m, with an ice volume calculated at 0.27 ± 0.04 km3. This result is relatively low compared to the findings of other studies, which lies in the fact that the GPR measurements somewhat constrain the model. However, the model parameters remain the primary source of uncertainty. The results from this study can be used to enhance water resource assessments for future glacier change models.

Funder

Third Xinjiang Scientific Expedition Program

Second Qinghai-Tibet Scientific Expedition Program

National Science Foundation of Gansu Province

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3