Mapping Topsoil Carbon Storage Dynamics of Croplands Based on Temporal Mosaicking Images of Landsat and Machine Learning Approach

Author:

Li Xiaoyan1,Wen Huiqing1,Xing Zihan1,Cheng Lina1,Wang Dongyan1,Wang Mingchang2ORCID

Affiliation:

1. College of Earth Sciences, Jilin University, Changchun 130061, China

2. College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China

Abstract

Understanding changes of soil organic carbon (SOC) in top layers of croplands and their driving factors is a vital prerequisite in decision-making for maintaining sustainable agriculture. However, high-precision estimation of SOC of croplands at regional scale is still an issue to be solved. Based on soil samples, synthetic image of bare soil and geographical data, this paper predicted SOC density of croplands using Random Forest model in the Black Soil Region of Jilin Province, China in 2005 and 2020, and analyzed its influencing factors. Results showed that random forest model that integrates bare soil composite images improve the accuracy and robustness of SOC density prediction. From 2005 to 2020, the total SOC storage in croplands decreased from 89.96 to 82.79 Tg C with an annual decrease of 0.48 Tg C yr−1. The mean value of SOC density of croplands decreased from 3.42 to 3.32 kg/m2, and high values are distributed in middle parts. Changes of SOC represented significant heterogeneity spatially. 62.14% of croplands with SOC density greater than 4.0 kg/m2 decreased significantly, and 38.60% of croplands with SOC density between 2.5 and 3.0 kg/m2 significantly increased. Climatic factors made great contributions to SOC density, however, their relative importance (RI) to SOC density decreased from 44.65% to 37.26% during the study period. Synthetic images of bare soil constituted 23.54% and 26.29% of RI in the SOC density prediction, respectively, and the contribution of each band was quite different. The RIs of topographic and vegetation factors were low but increased significantly from 2005 to 2020. This study can aid local land managers and governmental agencies in assessing carbon sequestration potential and carbon credits, thus contributing to the protection and sustainable use of black soils.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3