Understanding Spatiotemporal Variation in Richness and Rate of Within-Site Turnover for Vegetation Communities in Western Eurasia over the Last 4000 Years

Author:

Goodenough Anne E.,Webb Julia C.ORCID

Abstract

Vegetation communities are intricate networks of co-occurring species. Logistical challenges in collecting primary data means research often utilises short-term data from restricted geographical areas. In this study, we examine spatiotemporal change in richness and turnover of vascular plants and bryophytes over the last 4000 years at 23 sites in western Eurasia using high-resolution palaeoecological data. We find support for the Latitudinal Diversity Gradient and Altitudinal Diversity Gradient in both the overall vegetation community (arboreal and non-arboreal species) and the shrub and herb sub-community (non-arboreal species only), as well as a significant temporal increase in the gradient of both relationships. There was a temporal increase in (alpha) richness; the rate of turnover was high but temporally consistent for the overall vegetation community and high but decreasing over time for the shrub and herb sub-community. The rate of change in turnover was affected by latitude (steeper negative relationship at higher latitudes) and altitude (steeper negative relationship at lower altitudes). The Diversity-Stability Hypothesis was supported: vegetation communities changed from “lower richness, higher turnover” historically to “higher richness, lower turnover” more recently. Causal mechanisms for these complex interlinked biogeographical patterns remain ambiguous, but likely include climate change, non-native introductions, increasing homogenisation of generalist taxa, landscape simplification, and anthropogenic disturbance. Further research into drivers of the spatiotemporal patterns revealed here is a research priority, which is especially important in the context of biodiversity decline and climate change.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3