Evaluation of Regional Elevation and Blade Density Effects on the Efficiency of a 1-kW Wind Turbine for Operation in Low-Wind Counties in Iran

Author:

Akbari Vahid1ORCID,Naghashzadegan Mohammad2,Kouhikamali Ramin3,Yaïci Wahiba4ORCID

Affiliation:

1. Mechanical Engineering Department, University Campus 2, University of Guilan, Rasht 4144784475, Iran

2. Mechanical Engineering Department, University of Guilan, Rasht 4199613776, Iran

3. Mechanical Engineering Department, Isfahan University of Technology, Isfahan 8415683111, Iran

4. CanmetENERGY Research Centre, Natural Resources Canada, Ottawa, ON K1A 1M1, Canada

Abstract

This research investigates the effect of blade density and elevation above sea level on the startup time (Ts) and power coefficient (Cp) of a 1-kW two-bladed wind turbine. The study uses three Iranian hardwoods as the blade material and four counties of Iran with low wind speeds and different elevations as the case studies. The BW-3 airfoil is considered as the blade profile. A multi-objective optimization process with the aid of the differential evolution (DE) algorithm is utilized to specify the chord length and twist angle. The findings demonstrate that, while the maximum Cp of the optimal blades designed with all three types of wood is high and equal to 0.48, the average Ts of the optimal blades designed with oak and hornbeam wood is 84% and 108% higher than that of alder wood, respectively. It is also observed that, while raising the elevation to 2250 m decreases the Cp by only 2.5%, the ideal blade designed to work at sea level could not manage to start rotating at a height of 1607 m and above. Finally, an improvement in the Ts and Cp was observed by performing optimization based on the local atmospheric conditions associated with the incrementing blade chord length at high elevations.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3