Application of Bottom Ash as Filter Media for Construction Site Runoff Control

Author:

Bang Ki Woong,Joo Jin ChulORCID,Kim Jin HoORCID,Kang Eunbi,Choi Jongsoo,Lee Jung Min,Kim YonghyokORCID

Abstract

The potential application of bottom ash (BA) for construction site runoff control as an alternative filter media with high removal efficiency of total suspended solids (TSS) and longer operation period were evaluated. Both lab-scale single-layer and pilot-scale multi-layer filtration experiments were performed using BA filter media with different particle sizes and various volumetric flow rates. Due to the mesoporous, irregular, and spherical shape of gravel-size BA filter media used in this study, relatively low surface area, negligible pore volume, and greater pore size were observed. Both TSS removal efficiencies and clogging of BA filter media were a complex function of particle size of BA filter media and loading rate of TSS. Incoming TSS particles did not significantly penetrate beyond 46-cm BA filter media depth, accumulating on the upper layers and gradually forming a clogging layer to critical thickness, and finally the clogging filtration mechanism dominated the overall removal efficiency of TSS. Accumulation of TSS on BA filter media can be explained by the lumped sigmoidal empirical model, and an exponential decline in accumulation of TSS with depth results in minimal accumulation beneath the clogging layer. As practical implications, BA filter media depth of less than 46 cm is recommended with dual- or multi-media filters using mixtures of gravel-size BA and silt-size fine media, and a combination of detention basins can reduce frequent periodic de-clogging operation and management.

Funder

Hanbat National University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3