Symmetrical Rank-Three Vectorized Loading Scores Quasi-Newton for Identification of Hydrogeological Parameters and Spatiotemporal Recharges

Author:

Huang Chien-LinORCID,Hsu Nien-Sheng,Hsu Fu-Jian,You Gene J.-Y.ORCID,Yao Chun-Hao

Abstract

In a multi-layered groundwater model, achieving accurate spatiotemporal identification and solving the ill-posed problem is the vital topic for model calibration. This study proposes a symmetry rank three vectorized loading scores (SR3 VLS) quasi-Newton algorithm by modifying the Levenberg–Marquardt algorithm and importing a rank three structure from Broyden–Fletcher–Goldfarb–Shanno algorithm for identification of hydrogeological parameters and spatiotemporal recharge simultaneously. To accelerate directional convergence and approach a global optimum, this study uses a vectorized limited switchable step size in the transmissive groundwater inverse problem. The Hessian approximation rank three uses high and low-rank factor loading scores analyzed from simulated storage fluctuation between adjacent iterations for calculation and matrix correction. Two numerical experiments were designed to validate the proposing algorithm, showing the SR3 VLS quasi-Newton reduced the error percentages of the identified parameters by 1.63% and 9.65% compared to the Jacobian quasi-Newton. The proposing method is applied to the Chou-Shui River alluvial fan groundwater system in Taiwan. Results show that the simulated storage error decreased rapidly in six iterations, and has good head convergence as small as 0.11% with a root-mean-square-error (RMSE) of 0.134 m, indicating that the proposing algorithm reduces the computational cost to converge to the true solution.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3