A Time-Series-Based New Behavior Trace Model for Crowd Workers That Ensures Quality Annotation

Author:

Al-Qershi FattohORCID,Al-Qurishi MuhammadORCID,Aksoy Mehmet,Faisal Mohammed,Algabri Mohammed

Abstract

Crowdsourcing is a new mode of value creation in which organizations leverage numerous Internet users to accomplish tasks. However, because these workers have different backgrounds and intentions, crowdsourcing suffers from quality concerns. In the literature, tracing the behavior of workers is preferred over other methodologies such as consensus methods and gold standard approaches. This paper proposes two novel models based on workers’ behavior for task classification. These models newly benefit from time-series features and characteristics. The first model uses multiple time-series features with a machine learning classifier. The second model converts time series into images using the recurrent characteristic and applies a convolutional neural network classifier. The proposed models surpass the current state of-the-art baselines in terms of performance. In terms of accuracy, our feature-based model achieved 83.8%, whereas our convolutional neural network model achieved 76.6%.

Funder

Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference77 articles.

1. Wired Magazine 2006, The Rise of Crowdsourcinghttps://www.wired.com/2006/06/crowds/

2. Crowdsourcing;Poesio,2017

3. Extracting COVID-19 events from Twitter;Zong;arXiv,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3